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Abstract 

In support of development of emission reduction policies for the Dutch fen meadow areas, the 

National Research programme on Greenhouse Gas Dynamics in Peatlands and Organic Soils (in 

Dutch NOBV: https://www.nobveenweiden.nl/) aims to investigate the effects of various mitigation 

measures on the total greenhouse gas balance of the targeted areas. 

Complementing multi-site ground-based measurements using various techniques, we deploy 

repeated airborne surveys to measure in-situ turbulent CO2 exchange. The push propellor aircraft 

is equipped with a turbulent wind filed sensor, in combination with an open-path gas analyser for 

eddy covariance (EC) fluxes of momentum, sensible and latent heat and CO2, augmented by 

onboard PAR (photosynthetic active radiation) and net radiation sensors. Survey altitude is 

200ft/60m nominally, guaranteeing minimal flux divergence between surface and flight level. 

Covariances were spatially integrated over 2 km. 

From 2020 till 2022 flights were made twice weekly, weather permitting, to cover three major fen 

meadow landscapes in the Netherlands: the so-called ‘Groene Hart’ area in the west, the ‘Kop van 

Overijssel’ and the South West of the province of Friesland more to the north. Flight patterns ensure 

full spatial coverage of the respective areas. Thus we created a unique airborne flux dataset, 

comprising 129 flights (till December 2022) that produced 11451 data records (2km integrated flux 

estimates, spatially distributed). In addition, data from two EC towers were included in the analysis. 

The present study focusses on the Groene Hart region only. We analysed CO2 fluxes in relation to 

potential predictors from vegetation and soil characteristics, land and water management (EO and 

map based) and weather, using machine learning algorithms. We optimised three Boosted 

Regression Tree (BRT) models using either tower-based EC measurements only, airborne EC 

measurement only, or a combined dataset. The BRT model based on the combined complementary 

data sets outperformed the other two models in terms of correlation between observed and 

simulated CO2 fluxes. The main drivers identified using Shapley values were not surprisingly and in 

order of importance PAR, humidity, temperature and available water storage capacity, the first two 

driving photosynthesis the latter two ecosystem respiration. Other explanatory variables include 

NDVI and specific land cover and soil classes that further modulate the CO2 flux. Isolating the thus 

modelled effects of ground water on regional CO2 emissions, we calculate that every 10 cm in 

ground water level rise causes a 3.3 ± 0.3 up to 4.0 ± 0.1 tCO2.ha-1.yr-1 reduction in emissions, the 

variation depending on the calculation method chosen and boundary conditions set. Training the 

ML model on the full dataset we hope to further reveal and quantify additional predictors. We aim to 

ultimately provide data driven regional greenhouse gas balances for the different fen meadow areas 

of the Netherlands. 
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1 Introduction 

Globally, peatlands store around 25% of all terrestrial carbon and are the most carbon-dense 

ecosystems of the terrestrial biosphere (Loisel, Gallego-Sala et al. 2021). In natural fens and bogs 

generally the emissions of methane from slow anaerobic decomposition of the accumulated organic 

material, is more than compensated for by the carbon dioxide uptake of its vegetation and 

subsequent sequestration in its peat soils (Frolking and Roulet 2007). Worldwide, organic soils have 

been and are exploited for fuel extraction, involving their drainage, followed by extracting, drying 

and burning the peat, and for agricultural use, generally requiring drainage leading to fast 

decomposition of the stored organic material. Thus, 250,000–290,000 km2 of peat are drained for 

use as cropland and grassland, releasing from 680 to 1,030 Mt CO2 annually (Evans, Peacock et 

al. 2021). 

In the Netherlands extensive peat areas were transformed from a carbon sink to a carbon source 

due to centuries of peat extraction and of intensive agriculture and livestock farming that require low 

water tables (Akker et al., 2008). As a result of groundwater abstraction, the oxidation of organic 

material leads to increased carbon dioxide emissions – currently accounting for 2-3% of all Dutch 

emissions or 4.25 Mt carbon dioxide annually – and land subsidence, which, in turn, increases the 

need for further drainage (Kwakernaak, van den Akker et al. 2010, van den Akker, Kuikman et al. 

2010). To counter this spiral, the Dutch government set a specific mitigation target for fen meadows: 

yearly emissions must be reduced by 1 Mton by 2030 (2019). 

Counter measures to reduce such emissions generally include raising the water table somehow, 

deploying various techniques, such as pressurized drainage, ditch infiltration and others. Several 

meta studies have summarized the effects of water table depth manipulations on CO2 and CH4 

emissions. (Evans, Peacock et al. 2021) combined data from 57 sites in the UK and Ireland with an 

additional 49 sites elsewhere in temperate and boreal climates, and fitted a single linear relation 

between effective water table depth and CO2 emissions, and an exponential relation between the 

water table depth and methane emissions. Every 10 cm increase in water table depth (down to  -

100 cm) below about -20 cm, thus leads to 3.4 tCO2 ha-1 extra annual emissions. (Tiemeyer, 

Freibauer et al. 2020) did the same for 118 sites in Germany, but fitted a saturating, non-linear 

(Gompertz) curve to their data, with an average slope between water table depth and CO2 emissions 

of 6.7 tCO2 ha-1 extra annual emissions for every 10 cm increase in water table depth (between 0 

and -60cm, levelling off for deeper water tables). Neither author found any clear effect of land use 

on these relations, justifying the lumping of all their data together. At the same time this left a lot of 

variability unexplained. 

All the datasets used in these meta studies have been based on site specific observations, using 

either chambers or flux towers on plots with well-defined, fairly homogeneous soil and vegetation 

characteristics and well-known water table management. However, they do not tell us the emissions 

at landscape level, where all three factors generally vary widely. Also, the effectiveness of any 

measure taken to manipulate emissions, probably well-proven in tightly controlled research settings, 

once scaled up may be undermined by relatively poor implementation or maintenance (Asselen, 

Jansen et al. 2023). In support of the development of a Tier 2 or even Tier 3 UNFCCC LULUCF 

reporting mechanism for emissions from organic soils (IPCC 2019) and as a means of verifying thus 

reported emissions there is a need for regional scale emission quantification methods (see Glossary 

for an explanation of abbreviations). 

In-situ regional scale emissions can be directly measured through either of two airborne strategies, 

direct flux measurements or mass balance based on concentration measurements, possibly 

augmented by inversion methods (Meesters, Tolk et al. 2013, Butterworth, Desai et al. 2021, Shaw, 

Allen et al. 2022) (Vellinga, Gioli et al. 2010). Relating these to the underlying surface can be done 

by building environmental response functions by either more classical statistical methods (Hutjes, 

Vellinga et al. 2010) or by machine learning approaches (Metzger, Junkermann et al. 2013), both 

depending on overlaying the footprint of all flux measurements over maps of vegetation, land use 
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and soils and/or direct satellite derived products such as NDVI. However, airborne flux 

measurements are generally limited to daytime conditions, because at night mixing at some height 

often is insufficient to reflect surface conditions, and for aeronautical restrictions. Unlike airborne 

studies of energy fluxes that can be self-contained because night-time fluxes are small (sensible 

heat) or virtually zero (evaporation), night-time fluxes of CO2 and other greenhouse gases are 

important, both for diurnal balances and arguably even more so for interpretation purposes, i.e. for 

flux partitioning approaches to separate Net Ecosystem Exchange (NEE)  into Gross Primary 

productivity (GPP) and ecosystem respiration (Reco ) (Reichstein, Falge et al. 2005). Therefore, we 

consider complementary use of tower and airborne flux estimates essential to jointly assess regional 

scale fluxes, the first being continuous in time but spatially limited, the latter spatially extensive but 

temporarily discrete. 

Thus the purpose of the present paper is to use a combination of airborne and tower based flux 

measurements to analyse CO2 emissions from fen meadow landscapes in the Netherlands in 

relation to water table management. 
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2 Methodology 

2.1 Study area 

The Dutch peat areas have entirely been formed during the Holocene, reaching their maximum 

extent (about 50% of present Netherlands)  around 4000 BP. Having originated largely in lagoons 

behind growing beach ridges, close to the nutrient supplying rivers (present or former channels) 

woody peat dominates on alluvial clays, while further away from these in nutrient poor conditions on 

marine clays (sphagnum) moss peat dominates. Much smaller areas of sedge or phragmites peat 

remain. Between 2000-1000BP large tracts eroded away again by a rising and repeatedly intruding 

sea, and since the medieval times it has been extracted by humans. Presently, some 325000ha of 

fens remain, mostly in the (south) west, where we are targeting the so-called Groene Hart region, 

in the north where we target southwest Friesland (Fryslân in the west Frisian language), and south 

of that where we target the Kop van Overijssel. The following descriptions refers to the area covered 

by the aircraft trajectories, i.e. by the measurement footprints (see next section). 

2.1.1 Groene |Hart 

The Groene Hart (the ‘Green Heart’ of the most urbanized region of the Netherlands) is the region 

we focus on in the present paper. It is roughly limited by Amsterdam in the northwest, Utrecht in the 

East and Rotterdam in the southwest. See figures 1 and 2. A large part of this rural area is below 

sea level, while the larger towns and cities are generally at or above sea level, historically founded 

on the levees of the rivers in the area. The area north of the Nieuwkoopse plassen (the crescent 

shaped lake north west of Woerden on the map in Figure 1) is among the deepest in the Netherlands 

at 5 - 6m below mean sea level (bmsl; more precisely ‘below NAP’ NAP being the national zero 

reference). The rest of the area covered by the aircraft is mostly 1.5 - 2m bmsl and the town and 

villages along the rivers ‘Hollandse IJssel’ and the ‘Oude Rijn’ are at 0-2m above mean sea level 

(amsl). 

Peat dominates the Groene Hart area, especially towards the west and north. Towards the east 

alluvial clay deposits dominate, while in the far northwest sandy soils dominate. Few peaty soils can 

be found in the north, figure 1a and 2b. Median peat thickness is 2-3 m (Fig 2d) with equal areas 

with thicker (upto 6m) or thinner peat. Peat types include Weideveen1, Koopveen (both woody peat 

with thin mineral top layer, the first more clayey, the latter more sandy) and Waardveen (moss peat 

with mineral top layer), with small remnants of Vlierveen (moss peat without mineral layer, see Fig 

2c). 

Of the three areas the Groene Hart is the most densely populated, as it is surrounded by the major 

Dutch urbanisations. Most of the built-up areas covered by the aircraft measurements are small 

towns and rural buildings, small enterprises and industry, roads and some greenhouses (towards 

the north west). Small arable areas can be found towards the north west and south east of the area, 

but grasslands used for dairy farming dominate the area. Open water in the form of many ditches, 

canals, rivers and some lakes covers a significant fraction of the area. Of the three areas, the 

Groene Hart has the smallest area of more or less natural fens or other designated nature areas. 

 

 

 

 

 

 

 

—————————————— 
1 These class names are left untranslated from the Dutch National Soil Classification. See Auxiliary data section. 
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2.2 Airborne flux measurements 

2.2.1 Equipment and processing 

The aircraft used in this study is a SkyArrow 650 TCNS, equipped with a set of fast response 

turbulence instruments (3D wind by the Best Airborne Turbulence -BAT- probe and water vapor and 

carbon dioxide by and open-path gas analyser) complemented with a set of scalar instruments (net 

radiation, incoming and reflected photosynthetic active radiation, air and surface temperature). An 

Inertial GPS system combined with accelerometers recorded position and attitude of the aircraft. 

The aircraft and its data processing are described in detail in (Vellinga, Dobosy et al. 2013), a brief 

summary follows here. 

The aircraft is operated under SPO and VFR regulations2. Measurement transects were flown at an 

altitude of 60 m (200 ft) above mean ground level, at a nominal airspeed of about 35 m/s. Banking 

never exceeded 15o or data were filtered out if otherwise. Generally, the pilot flew alone, initially 

forced so by the corona pandemic, after all data acquisition was automated providing visual status 

indicators on the most crucial science instruments on a small (7”) video screen on the aircraft 

instrument panel. Occasionally, also a task specialist (= scientific staff) flew in the passenger seat, 

taking notes of the landscape (e.g. fraction flooded, fraction of grasslands mown, or special events 

such biomass burning smoke plumes crossed) and/or the measurements on 17”monitor with real 

time data. When no task specialist flew, a 360o sports camera mounted below the fuselage was 

flown. 

Most instruments were sampled at either 50 or 20Hz and all signals stored in netcdf files, as 

controlled by a Raspberry Pi. Post flight processing started with de-spiking raw data (if needed at 

all) due to e.g. occasional  rain droplets on the open-path trace gas analyser. Next, 50 Hz air 

pressure and temperature measured by the BAT probe were converted to 3D wind fields and 

corrected for all aircraft motions. In the final step covariances between wind and water vapor and 

CO2 concentrations were calculated, spatially integrating these over 2000 m windows, and 

converted to fluxes using standard corrections for frequency response (Moncrieff, Massheder et al. 

1997, Moncrieff 2004)and density effects (Webb, Pearman et al. 1980). Data were quality assessed 

and filtered according to the framework by (Foken 2004). In addition the most important 

meteorological scalar variables, potentially influencing CO2 and heat fluxes (incoming and reflected 

photosynthetic active radiation (PAR), net radiation, surface temperature -from a longwave 

radiometer- and air temperature and humidity) were aggregated over the same spatial windows as 

the EC measurements. 

2.2.2 Aircraft flight strategy 

In the framework of the NOBV we adopted a flight strategy aimed at a complete spatial coverage of 

the respective landscapes (compare e.g. (Mauder, Desjardins et al. 2008)). To that end we designed 

a flight pattern with parallel transects more or less perpendicular to both the prevailing wind direction 

and to the main soil gradients. The transects were about 2 -3 km apart, though not necessarily 

strictly parallel as our nominal flying altitude forced us to avoid major built-up areas, ‘Natura 2000’ 

nature reserves, powerlines and wind turbines. This transect spacing was chosen such that the 

footprint (calculated following (Kljun, Calanca et al. 2015)) of the measurements cover the area in 

between the transects. As shown in Figure 1 the footprints do indeed cover most of the area due to 

varying wind directions. More importantly, all the major soil classes are covered, not only in mixed 

footprints but also in footprints covering a single soil class, either pure organic (peat), mixed (peaty) 

or mineral (clay soils to the north-west, sandy soils to the south-east). Average peat thickness in the 

footprints is around 2m, though also thin remnants and much thicker peat layers occur. Similarly, all 

important land use classes in the region occur in the footprints, though only ‘grass’ (pastures used 

in dairy farming) or open water (lakes) ever dominate the weighted footprint. Half the footprints are 

—————————————— 
2 VFR = visual flight rules, allowing only daylight flights with good visibility; SPO = specialised operations 

documenting and certifying all non-standard flight operations 
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covered by more than 80% grass, a quarter by more than 90% and only 3% of the footprints are 

covered by more than 99% grass, see also Figure 2 (and SM1-4 for the other regions). 

 

 

 

 
Figure 1: Soil (a, left) and Land use map (b, right) of the study area in the “Groene Hart”, with linear 
representations of every fifth (in order to retain background map visibility) footprint of individual flux 
measurements. Black dots indicate the location of the aircraft, white lines extend upwind from there till the point 
where the footprint weight integral reaches 80%. Capital letters indicate the cities of G - Gouda,  M - Meerkerk, 
S – Schoonhoven, W – Woerden. 

 

Conditions and pilot availability permitting, 2 flights per week were made almost year-round. In the 

research period covered in this paper (2000-2022; measurements are still continuing) in total 129 

flights were made distributed over the three areas as presented in Error! Reference source not 

found.. In Error! Reference source not found. and in the Supplementary Material more overviews 

are presented of typical observations. These figures clearly show a strong seasonal cycle in energy 

and CO2 fluxes. Also within seasons considerable spread in e.g. light conditions (e.g. overcast vs. 

cloud free conditions), temperature and wind speed and direction was sampled. 
 

Table 1 Statistics of all flights 2020-2022 

Fen meadow area Trajectory length no of flights no of observations 

Groene Hart 262 km 54 4728 

Kop van Overijssel 166 km    41 2972 

Fryslân 312 km1) 34 3751 
1) generally flown in two sections due to long ferry flight 

Please note: Though descriptive data statistics cover all data, only data collected between March 

2020 and December 2021 in the “Groene Hart” region, were used in the present ML analysis (given 

their processing and quality assessment status at the moment the present study was started ). This 

dataset comprised 2639 airborne data records. For a definite paper of course we will use all 

available flight data for the respective regions. 
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Figure 2a Histograms of footprint fractions of (merged 3) land use classes in the “Groene Hart”. Horizontal: 

fraction of each footprint covered by respective classes; vertical: fraction of all 4320 footprints of flights between 

March 2020 and December 2022. Bins: <1%, 1-10%, 10-20 %, 20-30%, etc. 

  

—————————————— 
3 See section Auxiliary data 
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Figure 2b. Histograms of aircraft footprint fractions of (merged2) soil classes in the “Groene Hart”. Otherwise 

as in Figure 2a. 

 

Figure 2c Histograms of aircraft footprint fractions of peat soil classes in the “Groene Hart”. Otherwise as in 

Figure 2a 
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Figure 2d Histograms of aircraft footprint fractions of time varying OWASIS  variables (Blue) and weighted 

footprint-average peat depth (brown) in the “Groene Hart”. Otherwise as in Figure 2a. Note: Ground Water 

Levels (left graph) are relative to NAP: much of the area is 2-3 m below sea level, the area north of the 

Nieuwkoopse Plassen is 5-6 m below sea level. 

 

Figure 2 Flight overviews produced for the “Groene Hart” 1 Jan 2020 - 31 Dec 2022. Points in each graph 

present flight-averaged observations, plus standard deviation. Top graph: CO2 flux (blue, left axis; note we plot 

-CO2flux to show the co-evolution with PAR, so positive values indicate CO2 uptake by the land scape) and 

PAR (brown-red, right axis). Grey bars in second graph present the number of data points in each flight. Third 

graph:  air temperature (at flying altitude, blue, left axis) and relative humidity (brown-red, right axis).  
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2.3 Tower based flux data 

In our analysis we combined aircraft data with tower data. The latter are highly complementary to 

the former in the sense that they are localised in space and continuous in time, which is especially 

important as they include also nighttime data (aircraft is only daytime!), which we expect to be 

important to parametrise the ecosystem respiration. In contrast aircraft data are (almost) continuous 

in space, but highly intermittent in time. 

In the “Groene Hart” area two towers have been used for the present study: Langeweide and 

Zegveld (pasture, measure plot, not the typha plot on the same farm). In the present study only data 

between September 1st 2021 and January 31st 2022 were used (given their processing and quality 

assessment status, at the moment the present study was started). No attempts at gap filling were 

made; outliers defined as 0.5% highest and lowest values for CO2 flux were removed, resulting in 

7937 half hourly data records. For a full description of tower based flux data and their interpretation 

in this area see (Bart Kruijt 2023) for CO2 and (Buzacott, Kruijt et al. 2023) for CH4. 

At these towers, fluxes of CO2 (and CH4, but not considered here), evaporation and sensible heat 

are measured with the eddy covariance method, alongside weather station measurements of PAR, 

4 component radiation (shortwave and longwave, incoming and reflected), air temperature and 

humidity and rainfall and soil moisture and soil temperature. 

 

2.4 Auxiliary data potentially explaining CO2 flux variations 

We want to relate the observed CO2 fluxes to the most promising explanatory variables related to 

land and water management. The Netherlands is a very data rich country, so we have static maps 

available of 

• Land use and land cover (Hazeu, Vittek et al. 2020): the LGN product  is annually updated 

and maps land cover at 5 m resolution, comprising 48 classes. We reclassified those to 12 

aggregated classes, see supplementary material. Fourteen classes were never in our 

footprints, and many more (e.g. crops other than maize) only in small fractions in a small 

number of footprints. 

• Soil maps: the Dutch soil classification discerns 302 distinct soil classes based on complete 

soil profile information. (see https://app.pdok.nl/viewer/,   then ‘Overige kaarten – 

‘Basisregistratie Ondergrond (BRO)’ – ‘BRO Bodemkaart – Bodemvlakken’). The 302 

original soil classes were reclassified to 21, distinguishing 9 different peat ‘archetypes’ and 

one peaty class, see supplementary material. For figure 1 (and SM1 and SM4) those were 

further merged into 1 peat class, only for display purposes. 

• A digital elevation model is available for the Netherlands based on LIDAR altimetry at very 

high horizontal (0.5 m) and vertical resolution (0.05 m), the AHN3 (Lisa Keurentjes 2020), 

see https://www.ahn.nl/ahn-viewer.  In this study a 5 m horizontal resolution product version 

was used. 

• Peat thickness (F. de Vries 2014 and follow on reports) 

 

In addition we use dynamic, time varying maps, that are generally earth observation (EO ) based: 

• The OWASIS product provides daily three related parameters at 250m resolution: Drainage 

depth (in Dutch ‘ontwateringsdiepte – OWD, units: m), Available water storage capacity 

(‘beschikbare bodemberging’ – BBB: mm) and Groundwater Depth (‘grondwater stand’ - 

GWS: m relative to NAP). The data are based on radar precipitation, microwave and other 

EO data assimilated into the National Hydrological Model – LHM (van den Brink 2019, 

Spijker 2020). See also https://www.hydrologic.com/projects/owasis/   

• NDVI derived from MODIS (MOD13Q1), at 250 m resolution and  16-day intervals (Didan 

2015)  

  

https://app.pdok.nl/viewer/
https://www.ahn.nl/ahn-viewer
https://www.hydrologic.com/projects/owasis/
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2.5 Machine learning training and optimisation 

There are only a few other studies analysing airborne flux measurements with machine learning 

(Metzger, Junkermann et al. 2013, Serafimovich, Metzger et al. 2018, Vaughan, Lee et al. 2021). 

These studies focus on heat fluxes, relying only on aircraft data, and using static EO and map 

information. Yet, their methods serve as inspiration. All these studies promoted the usefulness and 

capabilities of the boosted regression trees (BRT) algorithm from the R Package by (Elith 2008), 

here we use the more modern Python package XGBoost (Extreme Gradient Boosting) (Chen 2016). 

BRT’s can fit complex non-linear relationships, automatically handle interaction effects between 

features and are non-parametric, which means no prior assumption on the function is needed 

(Metzger, Junkermann et al. 2013). XGBoost potentially achieves high predictive performance  

(Nielsen 2016). Many more studies exist in which machine learning was used to simulate tower 

based fluxes (Knox, Sturtevant et al. 2015, Irvin, Zhou et al. 2021). In the present study we will use 

both airborne and tower based datasets to train and evaluate 3 distinct BRT models: one each for 

the two datasets used exclusively, and one using the combined data set. Thus we can assess the 

added value, if any, in terms of model performance of combining the complementary nature of these 

two data sets or not. 

It is important to tune the model to the optimal level of flexibility for the present dataset. This was 

done by a) reducing the parameter space: ‘feature selection’, and b) optimizing the model’s settings:  

‘hyperparameter tuning’. 

In the current study, a hybrid feature selection approach was used, as is frequently done by studies 

that use XGBoost (Ogunleye 2019, Sang, Xiao et al. 2020, Prabha 2021). Similar to these studies, 

three feature selection methods were selected to determine the best subset of features: Pearson 

Correlation filter, Feature Importances in XGBoost, and Sequential Backward Floating Selection. 

First, Pearson correlation analysis (filter method) was done to make a rough selection of features. 

Here, (expected) correlations between the features and the response variable CO2 flux are of 

interest, but strong correlations among the predictors should be prevented. 

Second, Feature Importances were computed. XGBoost calculates the importance of features 

based on their share in important split-decisions, by averaging over the gain scores per split. The 

higher the gain average, the more important and effective the feature. Based on these feature 

selection methods, it is still possible that mutually correlated features score highly. Therefore, these 

first two steps serve as a pre-selection of features for the third method:  Sequential Backward 

Floating Selection (SBFS, a wrapper method). SBFS includes an extra element compared to the 

more standard and widely used Sequential Backward Selection (SBS), and is known to give good 

results (Chandrashekar and Sahin 2014, Rodríguez-Pérez and Bajorath 2020). SBFS was run with 

10-fold cross validation, the model used was a XGBoost tree with n estimators = 1000, learning rate 

= 0.05, max depth = 6, and subsample = 1. To avoid unequal representation in different folds of the 

k-fold cross validation, all datasets were shuffled beforehand. To evaluate which subset of features 

is optimal, the R2, MSE (mean squared error), bias and variance of each model proposed by SBFS 

were computed on the test set. The R2 was used as the final scoring metric. 

After optimization of the feature subset, the following hyperparameters were optimized: number of 

trees (n estimators); maximum depth (tree complexity, max depth); learning rate (learning rate); and 

subsample ratio (subsample), the same as in Metzger et al. (2013). For every hyperparameter, 

multiple potential values were constructed and using a grid search with 10-fold cross validation 

(GridSearchCV from Scikit Learn) on the training set, the optimal combination of hyperparameters 

was found. Again, R2 was used as scoring metric. 

Throughout all steps, the data was split into a training set and a test set, containing 90% and 10% 

of the data, respectively. It is important that the test set is always the same, which can be attained 

by setting a ‘random seed’ in the splitting function. This way, the model is never evaluated using 

then same data it was trained on. Furthermore, all features in the training and test sets were 

normalized to have a mean of 0 and a standard deviation of 1. 
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2.6 Machine learning and model interpretation approach 

Understanding the behaviour of a ML model in more physical terms is not a trivial task. Here we use 

two approaches: the SHAP framework and simulations along prescribed physical gradients. 

The unified framework SHAP (SHapley Additive exPlanations), was developed to address the 

(often)  difficult interpretation of ‘black box’ machine learning models (Rodríguez-Pérez and Bajorath 

2020). By computing the marginal contribution of each feature value to the predicted output, SHAP 

gives insight in the model’s behaviour (Lundberg and Lee 2017). SHAP is based on Shapley values; 

they describe the contribution of every feature to the final model outcome, given the combined 

contribution of all other features. One by one each feature is denied its contribution to the model by 

assigning random values to it, as this results in no added predictive power. Comparison of models 

output with and without the contribution of this feature thus isolates its contribution to the model 

outcome. In the current study, Shapley values thus analyse the importance and contribution of 

features of the best performing BRT model to the simulated CO2 fluxes: a negative Shapley value 

indicates a negative contribution to the flux, meaning more uptake (more photosynthesis) or less 

emissions (less respiration), and vice versa for a positive Shapley value. 

In the context of drained fen meadows, it is well established that the most important drivers of 

emissions are water table related (see Introduction). So, to further interpret model behaviour the 

best performing BRT model was used to simulate CO2 emissions along a gradient of the OWASIS 

– BBB parameter (available water storage capacity) for several distinct and otherwise constant 

meteorological settings (PAR, air humidity and surface temperature).  
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3 Results 

The following are tentative results, for the Groene Hart region only, based on partial datasets 

available at the start of this analysis. Analysis will be repeated and extended with more complete 

datasets covering multiple years, and for the other two NOBV regions. 

3.1 Feature selection and model optimisation 

First, correlations between features are examined by use of correlation matrices(Fig SM 7). These 

show, not surprisingly, considerable correlation between the meteorological variables, mostly due 

to their seasonal co-variation. Nevertheless, the primary ones were retained and only Vapour 

Pressure Deficit was omitted as it represents (almost) the same, though inverse information as 

contained in Relative Humidity. Next, the three OWASIS parameters also show strong mutual 

correlation and based on considerations explained below only available water storage capacity 

(BBB) was retained. Grassland dominated most footprints, and since the presence of any other land 

cover class will be at the cost of Grassland, it (inversely) correlates somewhat with the other 

landcover classes, see also Error! Reference source not found.a. Similarly, peat dominates the 

area and its subclasses (Waardveen - kV, Weideveen – pV and Koopveen - hV) anti correlated for 

the same reason, see also Figure 2c. Nevertheless, in the Airborne and Merged models several 

classes of each land cover and soil were retained; obviously not so in the Tower model as these do 

not vary for a fixed location. 

Next, the XGBoost based Feature Importance for the predictand CO2 flux is examined, see Error! 

Reference source not found.. Firstly, it should be noted for the Tower dataset only the time 

evolving parameters have any importance. Also the static parameter the fraction of Grassland (Grs) 

in the footprint of the two towers apparently differs somewhat and thus exhibits some importance.  

Any other land use or soil classes show up only in the Airborne and Merged datasets. The three 

OWASIS parameters score very high, preceded only by PAR, confirming already their importance 

for the CO2 flux, i.e. the respiration flux. Also NDVI ranks high in all datasets explaining variability in 

GPP. Thus the first 9 features, except GWS and VPD (because they are highly correlated to other 

parameters already) and Grs, were passed on to the SBFS selection algorithm for the Tower dataset 

and a further 14 parameters for the Airborne and Merged dataset. 

The Sequential Backward Feature Selection retained only 5 parameters for the Tower dataset, 

dropping more  features compromised the model performance. The R2 peaked for 11 features in the 

Airborne datasets. The R2 peaked for either 6 or 13 features in the Merged datasets, but MSE for 

the latter is slightly lower. To retain maximum meaningful surface information, but also to maintain 

the most parsimonious model, we continue with two feature subsets for the Merged model, with 6 

and 13 features respectively. See Figure SM8. 

Hyperparameter tuning involved four parameters, of which one optimized to the same value for all 

four models, i.e. the Tree Max depth was set to 9. For the other three hyperparameters that have 

been optimized for each model variant, see Table 2. 
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Figure 4  Feature importance for all three data sets: Tower only, Airborne only, or Merged. 

 

 

 

Table 2 Final selected features after SBFS, the tuned hyperparameters of optimized models and the 

performance of the best model in each category. 

 
Model  
  
 

Selected features after SBFS Hyperparameters Metrics 

  learnin
g rate 

sub 
sampl
e 

no. of 
trees 

R2 MSE 

Tower PAR_abs, Tsfc, RH, NDVI, BBB 0.001 0.8 4000 0.47 30.9 

Airbor
ne 

PAR_abs, Tsfc, RH, NDVI, Bld, dFr, 
rivK, hV, zeeK, kV, W 

0.001 0.55 4000 0.35 44.0 

Merge
d 6 

PAR_abs, Tsfc, RH, BBB , Grs, SpC 0.005 0.8 1000 0.61 31.0 

Merge
d 13 

PAR_abs, Tsfc, RH, NDVI, BBB, SuC, 
SpC, Wat, dFr, rivK, pV, zeeK, V 

0.001 0.8 7000 0.61 30.8 

 

 

3.2 Interpretation of best performing model behaviour 

Considering the highest R2 scores, but also model parsimony, the merged model with 6 features is 

preferred and therefore used for all subsequent analyses. Figure 5 shows an overview of all Shapley 

values for the merged model with 6 features. According to these Shapley values, the importance of 

the features in the model is ranked as follows: PAR abs, Tsfc, RH, BBB, Grs and SpC, identical to 

their importance ranking in Figure 4. It shows that PAR abs has the widest range of Shapley values, 
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from -25 to 15, where low values of PAR_abs have a positive contribution to the flux and high values 

of PAR abs a negative contribution, as expected for the main driver of GPP. The same pattern, but 

within a smaller range, is visible for RH. For Tsfc, on the other hand, the opposite is the case: higher 

Tsfc values lead to more positive contributions, consistent with it controlling ecosystem respiration 

more than it does control GPP. For BBB there is no clearly visible pattern from this particular 

visualisation, but the next one will elucidate why. Low values of Grs result in a positive contribution 

to the flux (apparently alternative land use is generally a CO2 source, i.e. build-up area or open 

water), whereas low values of fractional area of spring crops (SpC: cereals found in the north of the 

domain, see Figure 1) result in no contribution. 

 

 

 

 

Figure 5 Shapley values for the Merged-6 feature model, showing their importance and contribution to the flux. 

The colour represents the magnitude of the feature value, whereas the x-axis shows the corresponding Shapley 

value. 

 

Figure 6  Shapley scatter plots for the Merged-6 model: Shapley value on the y-axis indicating the contribution 

to the flux of the feature on the x-axis, coloured by a third second feature. Left: the relation between PAR_abs 

and CO2flux coloured by Tsfc. Right: the relation between BBB and CO2 flux, coloured by PAR_abs. 
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Figure 6 shows Shapley scatter plots of PAR abs and BBB. The PAR curve on the left is very similar 

to well-known light response curves, here a kind of regionally effective light response curve. It should 

be noted that the Shapley value is much better constrained by PAR than a direct plot of raw data of 

the CO2 flux on PAR, the latter exhibiting much more spread (not shown). It can be seen that with 

higher PAR, the contribution to the predicted flux is more negative and higher Tsfc values increase 

the contribution in the positive direction. The Shapley values of BBB remain spread around zero 

contribution, independent of the BBB value. This graph is hard to interpret, although it is already 

clear that trends may differ in sign along various subranges of observed BBB values, possibly 

explaining the lack of patterns in Figure 5.  

The relation becomes clearer as we filter the dataset for higher PAR values. Figure 7 shows Shapley 

values of BBB when filtered for PAR values larger than 800, coloured by temperature. BBB has a 

clearer influence on the CO2 flux now. However, a positive correlation between BBB and Tsfc 

apparent: low BBB occurs at low Tsfc and vice versa, indicative of their covariation over the course 

of autumn (BBB decreasing as the water table rises, while temperatures drop). The variation in 

Shapley value is not simply due to the variation in Tsfc: if all variance in flux would be captured by 

Tsfc, the Shapley value of BBB would be zero, which is clearly not the case. 

For BBB up to 90mm, increasing BBB leads to more uptake, shown by negative contribution to the 

flux, probably because it covaries with better seasonal growing conditions. For BBB between 90 

and 150 mm, increasing BBB leads to more emissions. For BBB above 150mm, the relation is ill 

defined, if only due to a low number of data records in this BBB range. To quantify the trend between 

BBB = 90 -  150mm, a linear regression was fitted. The t-statistics and p-values indicate that both 

intercept and slope are significantly different from 0; the slope indicates that for every mm more 

water storage capacity available in the soil, additionally 0.024 ± 0.002 μmol m-2 s-1 of CO2 is emitted, 

or 333 ± 28 kg CO2 ha-1 yr-1.mm-1.  

 

 

Figure 7 Shapley values of BBB when PAR > 800 for the Merged-6 model. 

 

 

Another way to interpret the model is to make simulations for a set of prescribed conditions and thus 

factoring out the various relationships, otherwise obscured in a black-box BRT. We did so for BBB 

values varying from 0-300mm and for different but otherwise constant values of PAR and Tsfc. 

Shown in Figure 8 at left are the results for PAR_abs = 0 and three relatively low Tsfc values of 0, 

5 and 10oC respectively. The same figure at right shows results for PAR_abs values of 1200 and 

1600 μmol.m-2.s-1, combined with temperatures of 15 and 20oC respectively. In both figures a 

linear regression was fitted to all data points with 0 mm < BBB < 150 mm at left and to all data points 

for 90 mm < BBB < 270 mm in the right side of the figure. The upper limits in these data ranges are 
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set because the model is ill constrained for these values due to lack of data (hence the straight 

horizontal lines at the right-end of these graphs). All regression coefficients significantly (p < 0.001) 

differed from zero. The 95% interval for the slope in the figure at left is 0.027 ± 0.001 μmol.m-2.            

s-1.mm-1, or 37 5 ± 14 kgCO2.ha-1.yr-1.mm-1 . For the slope in the figure at right the slope is 0.029 ± 

0.001 μmol.m-2.s-1.mm-1, or 403 ± 14 kgCO2.ha-1.yr-1.mm-1. 

 

 

 

Figure 3 Simulations for the Merged-6 model for PAR = 0 (left) and PAR = 1200 and 1600 (right) for different 

temperatures. See text for further explanation. 
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4 Discussion 

The analysis presented in this paper has been made on a limited dataset only. Though the results 

demonstrate the power of the approach, much may change when applied to the full dataset that is, 

longer in time and also includes the other two regions and towers in different localities. Part of the 

following discussion will already influence this future analysis on the extended dataset. 

4.1 Methods 

4.1.1 Airborne flux measurements 

In the present study airborne fluxes were calculated by direct spatial integration of covariances 

(Crawford, Mcmillen et al. 1993, Gioli, Miglietta et al. 2006, Vellinga, Dobosy et al. 2013). While we 

used a fixed 2 km integration window, in some conditions other window lengths may be preferable 

(Sun 2018).  Using typical averaging times, tower-based measurements suffer from spectral losses 

in lower frequencies, and basically the 2 km averaging windows for the aircraft fluxes potentially 

suffers from the same limitation. However, spatially resolved measurements such as our airborne 

eddy covariance measurements in principle can detect also larger scale (meso-β, meso-γ) transport. 

Alternative to block averaging, fluxes can be separated into smaller-scale turbulent and larger-scale 

mesoscale contributions using wavelet scalogram like approaches (Mauder, Desjardins et al. 2007) 

(Metzger, Junkermann et al. 2013, Paleri, Desai et al. 2022), analysing full transects or even flights, 

instead of short windows of these. One interpretation is that the turbulent component then reflects 

better the surface flux, that needs to be separated from the mesoscale flux, before relating it to any 

surface characteristics. All these studies analysed sensible and latent heat fluxes though, and it 

remains to be seen how relevant such approaches are to fluxes of CO2 or other trace gases. In a 

follow-on study we intend to pay further attention to this aspect.  

4.1.2 Data handling and model optimisation 

Airborne and tower data have different qualities: airborne data is spatially continuous but temporally 

limited, and tower data is spatially stationary but temporally continuous. However, while this 

complementarity should be beneficial in principle, its practicalities may lead to some spurious 

correlations among features and predictands. Both datasets differ in temporal coverage, 6 months 

for the tower data, 18 months for the airborne data, yet the latter has only 2624 records and the 

former 7937. The land use and soil classes are fixed for the tower data and variable for the aircraft 

data. To demonstrate the possible artifact this may create in the model consider the following. A 

non-negligible correlation is apparent (see Fig SM 7) between soil class hV (koopveen) and the CO2 

flux. This is probably due to the fact that one of the towers is on this soil type, and the fact that only 

tower data include positive, i.e. night time fluxes. Aircraft data on the other hand generally represent 

only small fractions of hV soils, but are always negative, because they include day-time fluxes only. 

Two options are available to potentially overcome such artifacts and to increase the likelihood of 

identifying relations between soil and or land use classes and the CO2 flux. First, the inclusion of 

data from more towers on different soil and/or land use types will be beneficial. Secondly, after all 

percentages of soil classes (or land use classes) in the footprints have been obtained, a clustering 

method such as K-means clustering or hierarchical clustering can be used to create often-occurring 

combinations of soil (land use) classes, potentially increasing their predictive power. Still, on one 

hand in the feature selection the threshold for model improvement, set to prevent un-parsimonious 

models, should be further optimised. On the other hand, a requirement for mandatory features can 

be set to maintain interpretability. 

Data filtering, while desirable for the analysis, may have similarly unwanted effects. For example, 

aircraft measurements are ‘polluted’ by data whose footprint contains significant fractions of built-

up areas. We could simply filter these out. Similarly, we are interested in peat oxidation, so we could 
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filter out data whose footprints contains significant fractions of mineral soils. However, both 

conditions would filter out aircraft data only and none of the tower data, thus greatly limiting the 

models potential to learn spatial relationships. A filter can have the advantage of specifying or 

constraining the model, but the disadvantage of decreasing the size of the training data. We prefer 

to leave either data set as much as possible intact, and use the trained model to separate out, i.e. 

simulate such idealised conditions of e.g. grassland on peat only.  

To make both datasets comparable in size, we can reduce the tower dataset by random sampling, 

possibly by stratification of e.g. day or night time fluxes, to make it similar in size to the aircraft 

dataset. More careful considerations of such analysis and/or data handling alternatives, with 

consequently trade-offs between interpretability vs performance, will surely be part of future work. 

4.1.3 Additional data 

Above we already mentioned the very real possibility that the aircraft data are literally polluted by 

the presence of fossil fuel based CO2 emissions from domestic heating, transport, greenhouses and 

small industries (and probably in that order of importance in our aircraft footprints). While the ML 

algorithm might be able to identify these sources because they feature on the land use map, the 

temporal emission profiles (both diurnal and seasonally) between these four categories differ and 

therefore may prohibit proper attribution.  Adding to the predictors time varying fossil fuel based 

emission maps may ease this problem and improve the relations found for the sources of our 

interest, i.e. the peat oxidation. Possibilities are gridded 1 km resolution emission maps, together 

with temporal emission profiles per category (Guevara, Petetin et al. 2022), 

Also, for temporal vegetation dynamics arguably better alternatives are available to the MODIS 

product used in the present version of this paper. Based on the GroenMonitor a special product for 

grasslands has been developed, the Grassland Monitoring Service (Roerink 2021), providing parcel-

level, 10 m resolution of NDVI identifying mowing events. It is based on the DMC satellite 

constellations providing 3.5m resolution data with a 1 day revisit time. 

4.1.4 Model evaluation 

The final model, combining data from both aircraft and towers explains 61% of the observed 

variance. This seems acceptable given the complex interactions analysed and random noise levels 

typical for Eddy Covariance observations. Compared to studies also modelling CO2 fluxes but by 

traditional methods, this R2 is in the same range (Jung, Reichstein et al. 2011, Zulueta, Oechel et 

al. 2011, Dou 2018). However, studies exploiting machine learning approaches tend to have higher 

R2 (Metzger, Junkermann et al. 2013, Serafimovich, Metzger et al. 2018, Vaughan, Lee et al. 2021), 

but these all focussed on simulating heat fluxes, arguably a simpler process to analyse. Also, it 

appears that neither of these studies used separate data subsets for learning and evaluation, 

respectively, like we did. Evaluating the model on the same (complete) dataset it was trained on, 

would also increase the R2 for our best model from 0.61 to 0.86. 

4.1.5 Model interpretation and analysis 

The Shapley based relationship between BBB and CO2 flux are not straightforward to interpret, 

unlike the PAR and Tsfc based Shapley values. Only filtering for certain conditions reveals more 

clear patterns (Error! Reference source not found.), though still not a monotonous relation. The 

decreasing trend for BBB<90mm is probably due to another co-variate that dominates in this range. 

Also the relation for BBB>150mm though based on fewer data points (and therefore presently 

neglected), if real might hint at a more saturating relation between emissions and increasing BBB 

like suggested by (Tiemeyer, Freibauer et al. 2020). Some of this complex behaviour may also result 

from the fact that Reco, does not only include respiration of old peat material, the prime interest of 

the NOBV programme, but also of young above and below ground litter, exudates and simply 

autotrophic respiration. The latter component is significant and strongly driven by GPP (Kruijt et al. 

2023). 

The simulations to quantify the same relation were constrained to several PAR, respectively Tair 

values. For night-time conditions (PAR=0) a monotonous relation emerges, unlike for daytime 



 

 

 

 

22    

conditions, the latter being more similar in shape to the Shapley’s and probably for the same 

reasons. The relations in Figure 3 show a kind of staircase like pattern, probably reflecting a series 

of splits the BRT algorithm makes to the data set. It might be useful to further analyse these trees 

to understand the reason for these splits and possibly replacing them with the aim to create more 

monotonous linear relations between soil moisture and fluxes. In principle, simulations for at least a 

full annual cycle of actual meteorology, and preferably for several decades, can be used to quantify 

a more climatological mean relation between the same emissions and BBB. 

4.2 Implications 

4.2.1 The ground water table as a driver of emissions 

The major finding of the present tentative analysis is the quantitative relation between BBB and CO2 

emissions we found for the area analysed. 

In order to relate the numbers found to parameters that are influenced by water management 

practices and to numbers reported in literature, we need to translate the BBB values to (effective) 

water table depth. The OWASIS framework itself provides at least a first step in that process. It’s 

OWD parameter (ontwateringsdiepte) claims to represent ground water, including effects like 

bulging (winter) or hollow (summer) groundwater tables in parcels surrounded by ditches and thus 

is not necessarily identical to the more readily measurable and manageable ditch water level itself. 

For now we assume that OWD is a good proxy for the effective water table depth. 

BBB and OWD are strongly correlated, and their correlation at first sight seems not to depend on 

soil classes as may have been expected, given known differences in porosity for different soil 

textures. Although the relation appears to be non-linear, we assume it to be linear since we do not 

know yet how to interpret the differences in the BBB interval over which the linear relationships to 

CO2 flux hold, as depicted in figures 7 and 8. 

 

 

 

 

Figure 9 Correlation between all observed values of BBB (mm) and OWD (m below surface) in the merged 

tower and airborne datasets. Colouring by major soil groups, showing no apparent differentiation in the relation 

between the two. The straight line is the 1:10 relationship, i.e. 100 mm BBB equals 1 m OWD. 

 

 

Assuming a 1:10 relationship between the two, i.e. 100 mm BBB equals 1 m OWD, implies that the 

slope of the regression lines of CO2 flux on BBB, from figures 7 and 8, translate to an emission 

increase of 33.3 tCO2 ha-1 yr-1 m-1 drainage depth up to 40.3 tCO2 ha-1 yr-1 m-1 drainage depth. 

These numbers are very comparable to those derived by other international studies based on annual 

budgets, e.g. 34.0 tCO2 ha-1 yr-1 m-1 over a 100 cm WT range (Evans, Peacock et al. 2021),  22 
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tCO2 ha-1 yr-1 m-1  over a 50 cm WT range assuming saturation occurs for WTR below 50 cm 

(Tiemeyer, Freibauer et al. 2020). They also are in line with those derived from closely related NOBV 

datasets, but using entirely different analytical and data aggregation methods (Boonman et al, 

2023), 30 tCO2 ha-1 yr-1 m-1  over a 150 cm WT range from only tower based EC observations (Bart 

Kruijt 2023), as well as instrumentally different data sources, i.e. 38.02 tCO2 ha-1 yr-1 m-1  from 

chamber data only (Ralph Aben 2023), Fritz et al. 2023).  Noteworthy to realize that the Evans and 

Tiemeyer studies are based on annual mean fluxes, claiming that the influence of seasonal 

dynamics of water levels on the CO2 flux is limited. Thus their relations represent spatial 

dependencies. In the present study, the relationship between BBB and the CO2 flux does not 

discriminate between spatial or temporal variations of BBB. Further analysis may clarify which 

dimension contributes mostly to the results. It then also remains to be seen whether any further 

optimized model can discriminate between different relations for e.g. different peat types. 

4.2.2 Use of the current approach in the context of mitigation policies 

One objective of NOBV has not been addressed with the current approach, namely the assessment 

of the effectiveness of different interventions to manipulate the water table, alternative land uses or 

other emission reducing measures like clay additions. As long as these are experimental and are 

implemented on small plots only, the present approach is not applicable. If otherwise evaluated 

positively and implemented at large scale, however, then airborne observations may be valuable to 

assess their effectiveness in real life situations that may differ from well controlled research plots. 

In the present study we analysed only the effect of one driver on CO2 emissions in more detail. 

However we strongly believe the current approach, i.e.  data sets and extended model, is potentially 

much more valuable and might reveal also effects of e.g. peat depth (in relation to water table), or 

peat type, or land use.  Apart from using a ML model to evaluate the effect of certain drivers as done 

here, another important possibility is to use that same model to simulate spatially distributed fluxes 

and thus create a flux map of the area either for some idealized constraints, or potentially also 

simulating a full year using some meteorological reanalysis product, such as ERA5. The results of 

such work may serve to verify LULUCF reported emissions, or support further development of 

spatially explicit reporting methods. These will be objectives of future work. 
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5 Conclusions 

Complementing multi-site ground-based measurements using various techniques, we deploy 

repeated airborne surveys to measure in-situ turbulent CO2 exchange over Dutch fen meadow 

landscapes. We thus created a unique airborne flux dataset, comprising 129 flights (till December 

2022) that produced 11451 data records (2km integrated flux estimates, spatially distributed. The 

present study focusses on the Groene Hart region only. The other areas will follow soon. 
In an exploratory analysis,  

• we optimised three Boosted Regression Tree models using either tower based EC 

measurements only, airborne EC measurement only, or a combined dataset. The BRT model 

based on the combined complementary data sets outperformed the other two models in terms 

of correlation between observed and simulated CO2 fluxes: R2 = 0.61 for the model trained on 

the combined dataset, compared to R2=0.35 for  the model trained solely on airborne data or R2 

= 0.47 for the model trained solely on tower data from 2 sites. 

• we identified the main drivers of CO2 exchange using Shapley values were not surprisingly and 

in order of importance PAR, humidity, temperature and available water storage capacity, the first 

two driving photosynthesis the latter two ecosystem respiration. Other explanatory variables 

include NDVI and specific land cover and soil classes that further modulate the CO2 flux. 

• we calculate that every 10 cm in ground water level rise causes a 3.3 ± 0.3 up to 4.0 ± 0.1 

tCO2.ha-1.yr-1 reduction in emissions, isolating the thus modelled effects of ground water on 

regional CO2 emissions. The variation depends on the calculation method chosen and boundary 

conditions set. This relation seems to hold over an approx. 150 cm range in groundwater levels. 
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Glossary 

amsl    above mean sea level 

BAT probe  Best Air Turbulence, a device measuring 3D wind fields from differential pressures 

BBB    available water holding capacity (an OWASIS product, in Dutch: beschikbare bodem berging) 

Bld    built-up areas (class in land cover map) 

bmsl    below mean sea level 

BRT    boosted regression trees, a catogory of machine learning algorithms 

dFr    deciduous forests (class in land cover map) 

EC    eddy covariance, a micrometeorological technique to measure turbulent fluxes 

EO    earth observation/ satellite data 

GPP    gross primary productivity 

Grs    grasslands (class in land cover map) 

GWS    ground water level (relative to NAP, an OWASIS product, in Dutch grondwater stand) 

hV,     woody peat with thin mineral top layer (class in soil map; from Dutch Koopveen) 

kV     moss peat with mineral top layer (class in soil map ; from Dutch Waardveen) 

LULUCF   Landuse Landuse Change and Forestry, a category of sources in emission inventories 

ML    machine learning 

NAP    Dutch national topographical zero altitude reference 

NEE    net ecosystem exchange, i.e. net CO2 flux, equals GPP-Reco 

NOBV   Dutch National Research Programme on Greenhouse Gases in Peatlands 

NDVI    normalised difference vegetation index, a proxy for amount of vegetation 

OWD    drainage depth (relative to field level, an OWASIS product, in Dutch ontwaterings diepte) 

PAR    photosynthetic active radiation  

PAR_abs   absorbed photosynthetic active radiation (i.e. incoming minus reflected PAR) 

pV     woody peat with thin clayey mineral top layer (class in soil map; in Dutch Weideveen) 

RH    relative humidity 

rivK    alluvial clays (class in soil map ; from Dutch rivier klei)  

Reco    ecosystem respiration 

SBFS    Sequential Backward Floating Selection, a feature selection method to build ML models 

SpC    spring crops (class in land cover map) 

SuC    summer crops (class in land cover map) 

Tsfc    surface temperature  

UNFCCC  United Nations Framework Convention on Climate Change 

V     moss peat without mineral layer (class in soil map ; from Dutch Vlierveen) 

VPD    vapour pressure deficit, a measure of air humidity 

W     peaty soils (class in soil map) 

Wat    surface water (class in land cover map)  

zeeK    marine clays (class in soil map; in Dutch zee klei) 
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6 Supplementary Material 

6.1 Description  other flight areas 

 

6.1.1 Fryslân  

The Frisian peat areas studied in NOBV can be found mostly between Wolvega in the south east, 

Drachten in the north east, Sneek in the north, Koudum in the west and Lemmer in the south. See 

figures SM1 and SM2. Again, much of the area is below sea level. The western area is mostly at 

0.5 -1.5m bmsl. East of Joure, between Heerenveen and Drachten much of the area is 1.5 – 2.5m 

bmsl. 

 

Peat in the study area can be found in two broad areas: a first 10km wide zone running from south 

west to north east, bordering the marine clays to the north west. Then a second area to the south 

of our domain that actually continues into the “kop van Overijssel” area, described in the next 

section. In-between these to peat zones as well towards to east we find sandy soils with 

considerable areas of peaty soils, see Figure SM1and SM2b. Hardly anywhere peat thickness 

exceeds 2m, Figure SM2d . Koopveen dominates the peat areas with also some Weideveen. 

Waardveen is found here much less than in the Groene Hart. Instead we do find small areas of 

Meerveen (a sandy humus rich mineral layer overlying eutrophic woody peat) and Madeveen (a 

peaty top layer overlying eutrophic woody peat).  

 

Of the three areas this region is probably the most water rich with a large number of substantial 

lakes, Figure SM1 andSM2a. It is less dense populated than the Groene Hart reflected in smaller 

built-up areas, with the city of Heerenveen in the centre of the flight tracks. More than in the Groene 

Hart but less than in in the Kop van Overijssel we find still natural fens or other designated nature 

areas. Of the three areas Fryslân is the most extensively and deepest drained, Figure SM2D. 

 

Figure SM1: Soil (left) and Land use map (right) of the study area in the Province of “Fryslân”, with linear 

representations of footprints of individual flux measurements. Red / black dots indicate the location of the 

aircraft, white lines extend upwind from there till the point where the footprint weight integral reaches 80%. 

Capital letters indicate the cities of D – Drachten, H – Heerenveen, J – Joure, S – Sneek, W – Wolvega. 
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Figure SM2a Histograms of footprint fractions of (merged) land use classes in “Fryslân”. Horizontal: fraction of 

each footprint covered by respective classes; vertical: fraction of all 3751 footprints. Bins: <1%, 1-10%, 10-20 

%, 20-30%, etc. 

 

 

Figure SM2b Histograms of footprint fractions of (merged) land use classes in “Fryslân”. Otherwise as in Figure 

SM2a 
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Figure SM2c Histograms of footprint fractions of peat type in “Fryslân”. Otherwise as in Figure SM2a   

 

 

 

 

 

Figure SM2d Histograms of footprint fractions of drainage classes (Blue) and weighted footprint-average peat 

depth (brown) in the “Fryslân”. Otherwise as in Figure SM2a. 
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Figure SM3. Flight overviews produced for Fryslân4 . Points in each graph present flight-averaged observations, 

plus standard deviation. Top graph: CO2 flux (blue, left axis, note we plot minus CO2flux to show the co-

evolution with PAR, so positive values indicate CO2 uptake by the land scape) and PAR (brown-red, right axis). 

Grey bars in second graph present the number of data points in each flight. Third graph:  air temperature (at 

flying altitude, blue, left axis) and relative humidity (brown-red, right axis). 

  

—————————————— 
4 Data acquisition started latest of the three areas, due to delays in obtaining flight permissions. 
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6.1.2 Kop van Overijssel  

This area is roughly limited by Meppel and Staphorst in the north and west, by Zwolle in the south 

and by Kampen in the west. See figures SM3 and SM4. Much of the area is below sea level, though 

less so than the Groene Hart. A 5 km circular depression east of IJsselmuiden is as deep as 3m 

bmsl, much of the Weerribben is around 1.5-2 m bmsl (not covered by the aircraft measurements, 

but represented by an EC tower), while most of the area covered by the aircraft is 0.5-1 m bmsl. 

The research area under the flight tracks is dominated by peat. Towards the east a narrow zone of 

peaty soils marks the transition to the sandy soils of eastern Netherlands. Towards the south and 

west we find alluvial clays along the delta branches of the river “IJssel” and “het Zwarte Water”. Most 

of the peat is less than 2m thick, though some 10% of the footprints has peat upto 3m thick. Of the 

three areas this one has the largest fractions of Madeveen and Meerveen. 

A few large lakes can be found in the north west of the domain surrounded by extensive nature 

areas of fens and cap holes, where large tracts of reed fields are harvested each winter to be used 

for thatched roofs. Also this area is less densely populated than the Groene Hart reflected in fewer 

built-up areas. 

 

 

 

Figure SM4: Soil (left) and Land use map (right) of the study area in the Province of “Kop van Overijssel”, with 

linear representations of footprints of individual flux measurements. Red / black dots indicate the location of the 

aircraft, white lines extend upwind from there till the point where the footprint weight integral reaches 80%. 

Capital letters indicate the cities of G – Genemuiden, M - Meppel, Z - Zwolle. 
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 Figure SM5a Histograms of footprint fractions of (merged) land use classes in “Kop van Overijssel” 

(“Rouveen”). Horizontal: fraction of each footprint covered by respective classes; vertical: fraction of all 3751 

footprints. Bins: <1%, 1-10%, 10-20 %, 20-30%, etc. 

 

 

Figure SM5b Histograms of footprint fractions of (merged) soil classes in “Kop van Overijssel” (“Rouveen”). 

Otherwise as in Figure SM5a 
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Figure SM5c Histograms of footprint fractions of peat types in the “Kop van Overijssel”. Otherwise as in Figure 

SM5a. 

 

 

Figure SM5d Histograms of aircraft footprint fractions of time varying OWASIS variables (Blue) and weighted 

footprint-average peat depth (brown) in the “Kop van Overijsselt”. Otherwise as in Figure SM5a. Note: Ground 

Water Levels (left graphs) are relative to NAP. 
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Figure SM6. Flight overviews produced for  the “Kop van Overijssel” (“Rouveen”)5. Points in each graph present 

flight-averaged observations, plus standard deviation. Top graph: CO2 flux (blue, left axis, note we plot minus 

CO2flux to show the co-evolution with PAR, so positive values indicate CO2 uptake by the land scape) and PAR 

(brown-red, right axis). Grey bars in second graph present the number of data points in each flight. Third graph:  

air temperature (at flying altitude, blue, left axis) and relative humidity (brown-red, right axis). 

  

—————————————— 
5 Data acquisition started later than for the “Groene Hart” due to delays in obtaining flight permissions. 
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Figure SM7. Pearson correlation matrices for airborne data (left) and merged data (right). Correlations between 

all features with all features are shown. Features hVz, Vz, aVz, kVz and leem were not present in the datasets, 

and therefore show no correlation (white rows/columns). 
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Figure SM 8.  Results of Sequential Backward Feature Selection for tower, airborne and merged data. 

Performance of each model is shown by R2, MSE, bias and variance. Following the SBFS process, where 

features are sequentially omitted, figures should be read from right to left.  

 


